|
|
- # Tacotron 2 (without wavenet)
-
- Tacotron 2 PyTorch implementation of [Natural TTS Synthesis By Conditioning
- Wavenet On Mel Spectrogram Predictions](https://arxiv.org/pdf/1712.05884.pdf).
-
- This implementation includes **distributed** and **fp16** support
- and uses the [LJSpeech dataset](https://keithito.com/LJ-Speech-Dataset/).
-
- Distributed and FP16 support relies on work by Christian Sarofeen and NVIDIA's
- frameworks team.
-
- ![Alignment, Predicted Mel Spectrogram, Target Mel Spectrogram](tensorboard.png)
-
-
- ## Pre-requisites
- 1. NVIDIA GPU + CUDA cuDNN
-
- ## Setup
- 1. Download and extract the [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/)
- 2. Clone this repo: `git clone https://github.com/NVIDIA/tacotron2.git`
- 3. CD into this repo: `cd tacotron2`
- 4. Update .wav paths: `sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' *.txt`
- 5. Install [pytorch 0.4](https://github.com/pytorch/pytorch)
- 6. Install python requirements or use docker container (tbd)
- - Install python requirements: `pip install requirements.txt`
- - **OR**
- - Docker container `(tbd)`
-
- ## Training
- 1. `python train.py --output_directory=outdir --log_directory=logdir`
- 2. (OPTIONAL) `tensorboard --logdir=outdir/logdir`
-
- ## Multi-GPU (distributed) and FP16 Training
- 1. `python -m multiproc train.py --output_directory=/outdir --log_directory=/logdir --hparams=distributed_run=True`
-
- ## Inference
- 1. `jupyter notebook --ip=127.0.0.1 --port=31337`
- 2. load inference.ipynb
-
- ## Related repos
- [nv-wavenet](https://github.com/NVIDIA/nv-wavenet/): Faster than real-time
- wavenet inference
-
- ## Acknowledgements
- This implementation is inspired or uses code from the following repos:
- [Ryuchi Yamamoto](github.com/r9y9/tacotron_pytorch), [Keith
- Ito](https://github.com/keithito/tacotron/), [Prem Seetharaman](https://github.com/pseeth/pytorch-stft).
-
- We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen,
- Yuxuan Wang and Zongheng Yang.
-
-
|