|
@ -10,7 +10,7 @@ class LinearNorm(torch.nn.Module): |
|
|
super(LinearNorm, self).__init__() |
|
|
super(LinearNorm, self).__init__() |
|
|
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) |
|
|
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) |
|
|
|
|
|
|
|
|
torch.nn.init.xavier_uniform( |
|
|
|
|
|
|
|
|
torch.nn.init.xavier_uniform_( |
|
|
self.linear_layer.weight, |
|
|
self.linear_layer.weight, |
|
|
gain=torch.nn.init.calculate_gain(w_init_gain)) |
|
|
gain=torch.nn.init.calculate_gain(w_init_gain)) |
|
|
|
|
|
|
|
@ -31,7 +31,7 @@ class ConvNorm(torch.nn.Module): |
|
|
padding=padding, dilation=dilation, |
|
|
padding=padding, dilation=dilation, |
|
|
bias=bias) |
|
|
bias=bias) |
|
|
|
|
|
|
|
|
torch.nn.init.xavier_uniform( |
|
|
|
|
|
|
|
|
torch.nn.init.xavier_uniform_( |
|
|
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) |
|
|
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) |
|
|
|
|
|
|
|
|
def forward(self, signal): |
|
|
def forward(self, signal): |
|
@ -42,7 +42,7 @@ class ConvNorm(torch.nn.Module): |
|
|
class TacotronSTFT(torch.nn.Module): |
|
|
class TacotronSTFT(torch.nn.Module): |
|
|
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, |
|
|
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, |
|
|
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, |
|
|
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, |
|
|
mel_fmax=None): |
|
|
|
|
|
|
|
|
mel_fmax=8000.0): |
|
|
super(TacotronSTFT, self).__init__() |
|
|
super(TacotronSTFT, self).__init__() |
|
|
self.n_mel_channels = n_mel_channels |
|
|
self.n_mel_channels = n_mel_channels |
|
|
self.sampling_rate = sampling_rate |
|
|
self.sampling_rate = sampling_rate |
|
|